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Abstract

A mathematical model was developed for investigation of waves in bubbly liquids with planar, cylindrical and spherical symmetry.
The problems of reflection of waves from free surface and rigid wall and interaction of waves were considered. It is shown that the reflec-
tion of pressure wave from free surface in bubbly mixture is considerably different than in the case of pure liquid.

For the reflection of shock waves from rigid wall, the nonlinear enhancement of wave was established. It is shown that in the system
under high static pressure, nonlinearity during the reflection from rigid wall manifest itself stronger. It was established that decreasing of
void fraction and increasing of initial bubble radius lead to the increasing of the value of maximum pressure at the wall surface.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Wave propagation in bubbly liquids was considered in a
number of works reviewed in [1,2]. It can also be men-
tioned [3–6], where the structure of steady shock waves
and evolution of nonstationary waves were studied.

In the present work, the system of equations was gener-
alized for cylindrical and spherical one-dimensional case.
Calculations for simplicity were made for planar waves
only. The reflection of waves from free surface and rigid
wall was considered. The interaction of waves was also
investigated.
1.1. Basic assumptions

The system of equations describing wave processes in
bubbly liquids. Wave processes in a vapor–liquid bubbly
mixtures are considered here using continuum mechanics
methods under the following basic assumptions:
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(i) the distances over which the flow parameters (for
example, oscillatory wavelengths) vary significantly
are much larger than the distances between the bub-
bles, which are themselves much larger than the bub-
ble diameters (i.e. the volume fraction of the vapor
phase is small enough, av 6 0.1);

(ii) the mixture is locally monodispersed, i.e. in each
material volume all the bubbles are spherical and
are of the same radius;

(iii) viscosity and thermal conduction are important only
in the processes of interphase interaction and, in par-
ticular, in bubble pulsations;

(iv) nucleation, fragmentation, interaction and coagula-
tion of the bubbles are absent;

(v) the velocities of the macroscopic motion of the phases
coincide. The last assumption allows us to describe
bubble volume changes, temperature distributions
around the bubbles, condensation and evaporation
in terms of the spherically symmetrical model using
the equations for bubble radial pulsations and radial
thermal conduction of the liquid. This assumption
originates from the fact that for vapor bubbles the
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Nomenclature

R bubble radius
a volume concentration of phase
t longitudinal velocity
w radial velocity
p pressure
q density
j rate of phase transition per unit interfacial sur-
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t time
n number of bubbles per unit volume
r coefficient of surface tension
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Subscripts

l liquid
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s at saturation state
r on bubble surface
1 conditions at infinity
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role of the interphase heat and mass transfer becomes
greater than for gas bubbles, and the two velocity
effects are therefore less significant in the background
of thermal dissipation [1,2].

Under the assumption listed above, the vapor–liquid
medium can be considered within the frameworks of a
model of two interacting and interpenetrating continuous
media, viz., the carrier liquid and the vapor phase [1].

In the Lagrange system of coordinates (n, t), the equa-
tions of changes of phase’s masses, the equations for a
change in the mass of an individual bubble and conserva-
tion of momentum of the mixture for one-dimensional
motions with planar, cylindrical or spherical symmetry
(correspondingly m ¼ 1; 2; 3) are as follows:
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i ; ði ¼ v; lÞ;
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4

3
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where the subscripts i = l,v refer to the parameters of the
liquid and vapor, respectively; the subscript 0 refers to
the parameters of the initial equilibrium state; ai; pi; qi; q

0
i

are the volume fraction, pressure, mean and true densities
of the ith phase, respectively; R is the bubble radius; j is
the rate of phase transition per unit interfacial surface
(j > 0 for evaporation and j < 0 for condensation); t is
the longitudinal velocity; n is the number of bubbles per
unit volume; r is the coefficient of surface tension; n is
the Lagrangian; x is the Eulerian longitudinal coordinates,
respectively, and t is the time.

Note that by virtue of assumption (i) (av� 1) from
(1.1), it follows that the average pressure in the mixture
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practically coincides with the pressure in the liquid phase
(p � pe).

The system of hydrodynamic Eq. (1.1) will be closed if
the equation of state, the condition of the simultaneous
deformation of the phases and the equation for determin-
ing the phase transition rate j are assigned.

The propagation, interaction and reflection of pressure
waves of moderate intensities can be considered under
the following additional assumptions:

(a) the carrier liquid phase is incompressible:
q0
e ¼ const:; ð1:2Þ
(b) the vapor obeys the equation of state of a perfect gas,
and being in the saturation state it obeys the Clapey-
ron–Clausius equation:

� �

pv ¼ q0

vBT v;
dT v

dpv

¼ T v

lq0
v

1� q0
v

q0
l

ð1:3Þ
(c) the bubble is uniform.
Here T is the absolute temperature, B is the gas constant, l

is the specific heat of evaporation.
The assumption that the carrier liquid is incompressible

is valid when the wave velocity v, relative to the medium
before the front, and the volume fraction of the vapor
phase satisfy the conditions (v/cl)

2� 1 and av � a� ¼
p0=q

0
l c2

l , respectively [1], where cl is the sound speed in
the liquid.

Under normal conditions, p � 0.1 MPa, the above con-
ditions hold for most liquids when the volume fraction of
the vapor phase av P 10�2 (since a� 6 10�4).

Transfer processes in bubbly liquids are determined by
the distributions of microparameters near inhomogeneities
[1]. A possible model is one that employs the concept of a
cell with a test bubble in it at any Lagrangian point. The
cell dimension is determined by the volume fractions of
the phases and equals to Ra�1=3

v , the cell centre coinciding
with the centre of the test bubble. The distributions of mic-
roparameters inside a cell are described by the equations
for the corresponding microprocesses with the boundary
conditions on the test bubble surface (which determine
the interphase interaction) and on the external boundary
of the cell [7]. Consider a spherically symmetric test bubble
with its centre at a point x, the microparameters around the
bubble being dependent of time t, the position of the bub-
ble centre x, and the distance r of a microparticle from the
centre.

To determine the temperature and heat-flux distribu-
tions, we use the equation of heat conduction around the
bubble. The phase transition rate j may be found from
the boundary conditions on the bubble surface. In the
absence of a macroscopic heat flux in the carrying phase,
that condition on the cell boundary should reflect the cell
adiabaticity.
The system of equations describing the distribution of
the microparameters around the test bubble and the
boundary conditions have the form

Clq
0
l

oT l

ot
þ wlr

R2

r2

oT l

or

� �
¼ 1

r2

o

or
klr2 oT l

or

� �
;

r ¼ RðtÞ : T l ¼ T v; jl ¼ �qv � ql;

ql ¼ �kl

oT l

or
;

rcell ¼ RðtÞa�1=3
v :

oT l

or
¼ 0;

ð1:4Þ

where w is the velocity of radial motion, Cl is the specific
heat of the liquid, k is thermal conductivity, qe and qv are
the heat fluxes to the liquid and vapor, respectively,
from the interface. The subscript r refers to the parameters
at the interface.

Within the framework of a uniform bubble containing a
saturated vapor, the heat flux qv ¼ kv

oT v

or

��
R

spent on a
change in vapor saturation temperature caused by a pres-
sure change is nonzero because the uniform-bubble model
corresponds to the asymptotic condition kv ?1,
oTv/or ? 0. In this case kvoTv/or 6¼ 0, because we have
indeterminacy of the type 1 � 0.

For qv to be calculated in terms of the model of a uni-
form bubble filled with saturated vapor, we use the equa-
tion of the heat flowing to the vapor phase. Substituting
the total derivative of the saturated-vapor temperature by
the derivative of the pressure according to (1.3), and inte-
grating this equation with respect to r within the limits
from 0 to R, we arrive at [8].
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where Cs is the vapor specific heat along the phase equilib-
rium curve [9]
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For most liquids, particularly for water, under normal con-
ditions (p � 0.1 MPa) Cs < 0. This means that for vapor to
remain in a saturated state when it is compressed, heat
should be abstracted from it. For water Cs = 0 at
p � 3 MPa.

The pressures of the phases and the bubble radius are
related by the condition of simultaneous deformation, as
described by the Rayleigh–Plesset equation [1,10]:
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In this equation, correction coefficients u1 and u2, are
introduced taking into account ‘‘nonsingleness” of the bub-
ble. The phase transition terms also were taken into ac-
count. These corrections u1 and u2 characterize the
difference of the fictitious pressure p1 at infinity from the
average pressure pe in the liquid. By adding boundary
and initial conditions, the system of Eqs. (1.1)–(1.7) will
be closed. As initial condition we took the condition of
equilibrium of vapor–liquid system at initial hydrostatic
pressure p0.

2. Transformation of the original system of equations

to the form suitable for numerical integration

Let us transform (1.1) to a form suitable for numerical
integration for the case of a one-dimensional wave with
planar, cylindrical or spherical symmetry.

From continuity equations for liquid and vapor phase
(1.1), we can obtain
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By equating the right sides of the equations, we obtain
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From the equation of conservation of mass of an individual
bubble (1.1), we can obtain expression for the derivative of
real density of the vapor
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If we substitute (2.3) to (2.2), we obtain
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By adding continuity equations for vapor and liquid phases
(1.1), we obtain
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If we substitute (2.4) to (2.5), we obtain

oq
ot
¼ � 3avqwer

R
: ð2:6Þ

By differentiating the equation of conservation of momen-
tum with respect to n, Eq. (2.4) with respect to t and equat-
ing the mixed derivatives, o2t/oton and o2t/onot, we obtain,
if (1.7) is taken into account, the following differential
equation for the average pressure:
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Note that this equation does not contain derivatives with
respect to t. This significantly simplifies the numerical
integration.

Eq. (2.7) represents an elliptic equation. Note that,
according to this equation, pressure disturbances propa-
gate with an infinite velocity. This is the consequence of
the incompressibility of the carrier liquid which transmits
pressure disturbances. The influence of the bubbles and
vapor properties is exhibited through the function M =
M(R0, wlr, pv, p), in which R0, wlr and pv can be deter-
mined from (1.7) and the following equation of mass for
an individual bubble:
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where c is the specific heat ratio. The infinite velocity of dis-
turbance propagation in the carrier liquid is the frozen
sound speed in a given two-phase dispersion medium.

Eqs. (2.4), (2.6) and (2.7) allow us to determine the
velocity and pressure fields of the mixture at fixed instants
through the known fields of the remaining parameters.

If we combine Eqs. (2.4)–(2.8) with equations of micro-
problem (1.3)–(1.7) then we will obtain the complete sys-
tem of equations for study of nonsteady one-dimensional
mixtures (with planar, cylindrical or spherical symmetry).

In particular case, when m = 1 (one-dimensional planar
wave), these equations will coincide with [4].

In the case of m 6¼ 1, these equations contain Eulerian
coordinate x(t,n).

In this case, the relationship between the Eulerian and
Lagrangian coordinates is expressed by the following
formula:
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Let us use dimensionless parameters
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The dimensionless equations contain the following inde-
pendent nondimensional parameters:
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These parameters characterize the influence on the process
liquid thermal conductivity (Pe), void fraction (avo), spe-
cific heat ratio of the vapor (c), wave intensity (Dpe), capil-
lary effects (S), small relative density of vapor (Cq), heat
capacities of phases and latent heat of vaporization
(CB,CL).

For convenience we will omit subscript * for nondimen-
sional parameters.

The problem was solved by a combination of modified
Euler method with the sweep method. For simplification
only planar waves was considered (m = 1).
Fig. 1. The reflection of the pulse from the free surface in the vapor–liquid
bubbly mixture (t1 = 1 ms, t2 = 2 ms, R0 = 1 mm, pe = 2p0): (a) avo = 0.05
and (b) avo = 0.01.

Fig. 2. The reflection of the pulse from the free surface in the vapor–liquid
bubbly mixture (R0 = 1 mm, avo = 0.05): (a) t1 = 1 ms, t2 = 2 ms,
pe = 1.5p0 and (b) t1 = 1 ms, t2 = 1.25 ms, pe = 2p0.
3. Results and discussion

To investigate the interaction and reflection of plane
nonsteady shock waves and pulse disturbances in vapor–
liquid bubbly media, we used the closed system of Eqs.
(1.3)–(1.7), (2.4)–(2.8). The corresponding mathematical
problems consisted in finding solutions of this system, sub-
ject to the following initial and boundary conditions at
specified cross-sections for the volume of mixture chosen
(n = 0, n = L):

pl ¼ p0; pv ¼ p0 þ 2r
R0
; R ¼ R0;

t ¼ wlr ¼ 0; T e ¼ T v ¼ T 0;
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P ¼ fBðtÞ or
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on

����
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op
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����
n¼L

¼ /LðtÞ ðn ¼ LÞ:

ð3:1Þ

The propagation of short pressure delta pulses was mod-
eled by assuming different laws of a rapid pressure change
which correspond to a linear rise and a linear drop of the
pressure in the zone of decreasing pressure. For a delta
pulse, the function f(t) is of the form

f ðtÞ ¼
p0 þ ðpe � p0Þt=t1; t < t1;

½tðp0 � peÞ þ pet2 � p0t1	=ðt2 � t1Þ; t1 6 t 6 t2;

p0; t2 < t;

8><
>:

ð3:2Þ
where Dpe = pe � p0 is the maximum value of the pressure
jump in the pulse or its amplitude, t1 and t2 are determined
by the duration of the initial pulse.

Let us consider the initial pressure p0 = 0.1 MPa. For
the reflection of shock waves from free surface, the bound-
ary condition was

pðL; tÞ ¼ p0: ð3:3Þ

Figs. 1 and 2 present the results of calculation of the
pulses reflections from the free surface. The values of initial
bubble radius, void fraction avo, and characteristics of
pulses were varied. The pressure disturbances disappear
after some time after reflection. Intensity of the pulse and
characteristics of bubbly mixture have an effect on velocity
and dispersion of pressure disturbances reflection. In par-
ticular, initial void fraction has significant effect on disper-
sion. This is because the velocity of wave propagation



Fig. 3. The reflection of the shock waves from the free surface in the
vapor–liquid bubbly mixture: (a) avo = 0.01, R0 = 1 mm and (b)
avo = 0.05, R0 = 1 mm.

Fig. 4. The reflection of the wave from the rigid wall in the vapor–liquid
bubbly mixture: (a) avo = 0.01, R0 = 1 mm and (b) avo = 0.05, R0 = 1 mm.
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increases when void fraction decrease. For the case
presented in Fig. 1b, the duration of the pulse is greater
than the time of traveling of the pulse until free surface.
But the character of reflection does not change drama-
tically.

The effect of R0 on reflection is similar. The reflection of
shock waves is presented in Fig. 3. After some time the
pressure profile along the mixture approaches the linear
dependence. So, introduction of the bubbles into a slightly
compressible liquid changes the character of reflection of
waves from free surface dramatically. Bubbly liquid, unlike
pure liquid, is much more sensible to the strain stress. The
reflection of pressure waves from free surface in the case of
‘‘pure” liquid (avo < 10�8) was discussed in [11]. In the case
of ‘‘pure” liquid, negative pressure can occur after reflec-
tion of waves. In the case considered here when
avo � 10�3–10�2, the pressure can be a little less than the
initial value p0 during very short time intervals only (after
reflection).

For the case presented in Fig. 3a, the minimum value of
the mixture pressure after wave reflection is about 0.98p0.
This value decreases when avo decreases.

Let us consider the reflection of waves from a rigid wall.
In this case, the boundary condition has the form

op
on
ðL; tÞ ¼ 0: ð3:4Þ

The typical situation characterizing the reflection of shock
waves from rigid wall in liquid with vapor bubbles is pre-
sented in Fig. 4. At the nonstationary stage, the pressure
profile has a characteristic splash.

The value of Dpe was varied. So, the different intensity
waves were initiated at both boundaries. The exceeding
of parameter Dpn� of each wave of some critical value, leads
to a nonlinear intensification during the passing of the
waves through each other. Here the current amplitude
Dpn� ¼ maxðp � p0Þ. n� equals to 0 or l in dependence of
the place of wave initiation. Let us introduce the parameter

K ¼ Dp
Dp0 þ Dpl

; ð3:5Þ

where Dp is the maximum value of the difference between
current and initial pressure of mixture during the interac-
tion. In the case of simple superposition of wave ampli-
tudes K = 1. In the case of nonlinear intensification of
waves K > 1.

Calculations show that an increase of avo leads to a
decrease of K. The small velocity of disturbances propaga-
tion corresponds to the large values of avo. For this reason,
the increasing of avo, which means the increasing of vapor
content in the mixture, leads to greater dissipation of the
wave energy.

So, the reflection of pulses from rigid wall can be non-
acoustical and considerably weaker of linear reflection.
This is related to the phase transitions creating the big
energy dissipation of pulses.

The possibility of the anomalous increasing of pressure
in the reflected wave was verified in a number of experi-
mental works. An example of such intensification is given
in [12] where during the reflection of shock wave of
initial intensity Dpe = 0.04 MPa the pressure greater than
0.4 MPa was fixed in the reflected wave. Approximately
the same intensification was obtained in calculations on
the base of the present model.



Fig. 6. The interaction of strong pulses in the vapor–liquid bubbly
mixture: p0 = 1.0 MPa, avo = 0.02, R0 = 1 mm, pmax = 3p0, t� = 0.15 ms.
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For investigation of the effect of high value of the initial
static pressure on the reflection of waves, calculations were
made for the following conditions:

p0 ¼ 1:0 MPa; avo ¼ 0:02; R0 ¼ 1 mm:

Fig. 5 represents the propagation and reflection of pulse
from rigid wall (pe = 3p0, t0 = 0.015 ms, t� = 0.15 ms) and
calculated ‘‘oscillogramme” of the pressure at the wall.
One can see that the wave is reaching the wall for the time
around 0.1 ms. The amplitude of the pressure oscillations
at the wall reaches 16p0.

The pulsation of the pressure, caused by the incident
wave, corresponds to the bubbles radial oscillations near
the rigid wall.

The interaction of two single waves in boiling water with
vapor bubbles under high static pressure was considered
(p0 = 1.0 MPa).

The intensities at the left and right boundaries were
equal pmax/p0 = 3. Duration of pulses was t� = 0.15 ms.
The initial distance between the pulses was 0.2 m. After
some time, the disturbances initiated at the left and right
boundaries propagated in the form of single waves, moving
to meet each other.

Fig. 6 represents the formed at the 0.15 ms pulses. Dur-
ing the motion to meet each other, dissipation caused by
heat and mass transfer leads to the decrease of pulses
amplitude.
Fig. 5. The reflection of the pulse from the rigid wall in the vapor–liquid
bubbly mixture and the calculated ‘‘oscillogramme” of the pressure at the
wall: p0 = 1.0 MPa, avo = 0.02, R0 = 1 mm, pmax = 3p0, t� = 0.15 ms.
At the moment t = 0.26 ms, the pulses meet and inten-
sity at that time reaches the value 16p0. In case the interac-
tion is according to the linear theory, the amplitude of the
formed pulses would be pmax = 5p0. So, nonlinear effects
lead to more than three times higher enhancement of the
amplitude of the total pulse.

Acoustical properties of bubbly and pure liquid are
totally different. The pure liquid can be studied in the
frameworks of linear theory for the waves of intensity up
to hundreds of atmospheres. In bubbly liquids, nonlinear
effects can manifest themselves even in weak waves with
the pressure intensity pe

p0
� 0:1. After reflection the wave

propagates along the mixture which was already com-
pressed. For this reason void fraction was decreased, and
compressibility of the mixture is also decreased.

The singularities of wave propagation in bubble screen
were discussed in [13].

4. Conclusion

The reflection of waves from free surface and rigid wall
in vapor–liquid bubbly mixtures were considered. The
interaction of waves in such media was also studied. It is
shown that the reflection of wave from free surface in bub-
bly mixture is considerably different than in the case of
pure liquid. For the reflection of waves from rigid wall,
the nonlinear enhancement of wave was established.
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